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1 Introduction

Delay is a problem that undermines the functioning of court systems around
the world.

Vereeck and Mühl (2000) distinguish four periods within the waiting time
between conflict and court decision: the negotiation time between parties; the
procedural time to prepare the trial; the waiting time before the actual start of
the trial; and the time of the trial itself. They argue that while data on court
delay often include the last three periods, only the third can be considered as
genuine court delay since it depends on the performance of the courts.
Di Vita (2010) review four different explanations for the excessive duration

of controversies. First, as emphasized by Buscaglia and Dakolias (1996), the
courts’ effi ciency might be insuffi cient due to a lack of resources devoted to
the justice and/or to its defective organization. Second, following Vereeck and
Mühl (2000), the complexity and the diversity of the law can itself be a source
of conflict and, indirectly, of the total amount of litigation. Third, as argued
by Djankov et al. (2003), the trial procedures allow the litigants to lengthen
the time required to reach a decision, thus prolonging civil disputes. Finally,
there is the possibility that both the judges (Palumbo and Sette, 2006) and the
lawyers (Dewatripont and Tirole, 1999; Djankov et al., 2003; Djankov, McLiesh
and Ramalho, 2006; Emons, 2000; Marchesi, 2003; Miceli, 1994) may benefit
from longer court delays.

In this paper, we analyse how court delay impact the functioning and effi -
ciency of the justice. We consider a standard model of liability, with some agents
(the defendants) engaging in dangerous activities, with potentially detrimental
consequences on the welfare of third parties (the plaintiffs). The defendants can
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exert costly care to limit the risk of causing an accident. After an accident, the
defendant and the plaintiff may enter or not in a pretrial negociation to reach
a settlement. If they fail to do so, the plaintiff may claim damages for loss with
a judge.
Following Gravelle (1990) and Vereeck and Mühl (2000), our framework de-

parts from the standard model of liability, by considering the existence of a court
delay. The key difference with Gravelle (1990) and Vereeck and Mühl (2000)
lies in our assumption that the time preferences are assumed heterogeneous and
private information (1). Our framework then allows to analyse how court delay
and damages modify the litigants behaviors at each stage of the judicial process.

In this setting, we characterize the (optimal) damages that minimize the
total social costs. We decompose the problem in three steps. The first one
determines the damages that would induce the defendant to internalize the
external costs of his activity, taking the expected social costs of an accident
as given. The second one then investigates the way the damages impact the
expected social costs of an accident. Qualitatively, we distinct two different
effects. First, as expected, larger damages induce more plaintiffs to bring a suit,
with larger litigation costs as a counterpart. Second, and more surprisingly, in
present value, larger damages can either be costly or beneficial, depending on
the litigants time preferences. More precisely, larger damages will contribute
to larger (resp., smaller) expected social costs of an accident if the defendant’s
discount factor is smaller (resp., larger) than the plaintiff’s discount factor. The
two effects can either reinforce or contradict each other, generating two different
shapes of expected social costs of an accident. Finally, the last step use these
arguments to characterize the optimal damages.

Section 2 analyses the case where pretrial negociation is not possible. Section
3 extends the analyse to the case where the litigants can negociate a settlement.
Most proofs are in the Appendix.

2 The basic model

An economic agent, referred to as the defendant (D), exerts a potentially dan-
gerous activity. D can expend x in care to reduce the risk of causing an accident.
The probability of accident is denoted p (x). It is assumed that p′ (x) < 0 <
p′′ (x). If an accident occurs, a third party, referred to as the plaintiff (P), bears
a loss l. P may claim damages for loss with a judge (J). Then, J evaluates
the harm l and sets the damages f to be paid by D to P. A judgment costs
cA to the judicial administration. A litigation costs cD to D and cP to P. Let
k0 ≡ cA + cD + cP be the total legal expenses. (The possibility of settlement,
whereby the legal expenses could in large part be avoided, will be considered

1 In fact, we assume that only the discount factor of the defendant is private information.
This assumption is mainly made both for the sake of simplicity.
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subsequently.) The social welfare criterion is assumed to be the minimization
of total social costs.

For all L ≥ 0, define x∗ (L) the level of care that minimizes x + p (x)L.
Assuming an interior solution, x∗ (L) satisfies:

1 + p′ (x∗ (L))L = 0.

By the envelop theorem, we can show that x∗ (L) is increasing in L:

(x∗)
′
(L) = (p′ (x∗ (L)))

2
/p′′ (x∗ (L)) > 0.

2.1 No court delay

Consider briefly the above standard model, where no court delay is considered.

Let f0 be the damages the judge would set at trial. P will bring a suit if and
only if f0 > cP . Otherwise, P will drop the case. Accordingly, D will choose
x = x∗ (cD + f0) to minimize x + p (x) (cD + f0), if f0 > cP , and will choose
x = 0, otherwise (2).

Total social costs will be the sum of prevention costs, expected losses, and
expected legal expenses. Thus, it will equal x+ p (x) (k0 + l), if the litigants go
to trial, and x+ p (x) l, otherwise.

Suppose that the total legal expenses k0 are not too large, so that x∗ (k0 + l)+
p (x∗ (k0 + l)) (k0 + l) < p (0) l. Then, given the litigants’behavior, total social
costs are minimized if and only if f0 = cA + cP + l, inducing P to bring a suit
and D to choose x = x∗ (k0 + l).

2.2 Positive court delay

Below, our framework will depart from the above standard model by considering
a court delay and heterogeneous time preferences. The court delay is defined
as the waiting time between the accident and the verdict. The judicial admin-
istration discount factor is denoted δA. D’s discount factor is denoted δD. It is
assumed public information. P’s discount factor is denoted δP . It is assumed
private information. However, it is common knowledge that δP is ditributed on
[0, 1], according to the cumulative distribution G (δP ). The density is denoted
g (δP ). The distribution elasticity is denoted ε (δP ) = −δP g′ (δP ) /g (δP ). Let
k1 = δAcA + cD + cP be the (present value) legal expenses.

To make clear the gap with the standard model, consider again the previous
analysis, step by step.

2Notice that x∗ (0) = 0.
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Let f1 be the damages the judge would set at trial. If f1 ≤ cP , no plaintiff
will bring a suit. Otherwise, P will bring a suit if and only if δP f1 > cP .
Alternatively, for all types δP > cP /f1, P will bring a suit and, for all types
δP ≤ cP /f1, P will drop the case. cP /f1 is the "marginal type of plaintiff".
D anticipates P’s behavior in choosing his care. However, as δP is private
information to P, he only knows that P’s discount factor is distributed according
to G (δP ). Therefore, if an accident occurs, D expects to pay at trial:

LD (f1) = (1−G (cP /f1)) (δDf1 + cD) , if f1 > cP ,

= 0, otherwise.

Thus, D will choose x = x∗ (LD (f1)) to minimize x+ p (x)LD (f1).

Total social costs will be the sum of prevention costs, expected losses, and
expected (present value) legal expenses. Thus, ex post, it will equal x +
p (x) ((δD − δP ) f1 + k1 + l), if the litigants go to trial, and x + p (x) l, oth-
erwise. The difference with the standard model arises because cA and f1 are
postponed and paid at the trial time.

Let LS (f1) be the expected social costs given D caused an accident. As P
goes to court if and only if δP > cP /f1, we have:

LS (f1) =

∫ 1

cP /f1

((δD − δP ) f1 + k1)dG+ l, if f1 > cP ,

= l, otherwise.

Ex ante, total social costs will be:

C (f1) = x+ p (x)LS (f1) .

The social problem is to choose f1 to minimize this objective, knowing that D
chooses x = x∗ (LD (f1)) to minimize:

x+ p (x)LD (f1) .

Below, to solve this problem, we analyse in turn two effects of the choice
of the damages. We first analyse the damages that induce D to internalize the
external costs of his activity. We then discuss the effect of the damages on the
social costs arising given D caused an accident. Finally, we gather both points
of view, to characterize the optimal damages.

2.3 Optimal care

Consider here D’s incentives to take care.

D’s incentive to care is driven by his private costs LD (f1), while the social
costs equal LS (f1) if D causes an accident. Let LE (f1) be the difference between
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LS (f1) and LD (f1), which can be referred to as the external costs of D’s activity.
We have:

LE (f1) =

∫ 1

cP /f1

(δAcA + cP − δP f1)dG+ l, if f1 > cP ,

= l, otherwise.

Clearly, if they exist, damages f1 such that LE (f1) = 0 are valuable, as they
will induce D to internalize the external costs of his activity and to choose
a socially optimal level of care. Formally, if LE (f1) = 0, then D’s private
objective coincides with the social objective, thereby inducing him to choose x =
x∗ (LD (f1)) to minimize x+ p (x)LS (f1).

We show in proposition 1 that damages f1 inducing D to internalize the
external costs of his activity exist and are unique under assumption 1 below.

Assumption 1. The distribution elasticity ε (δP ) is bounded from above by
2 + cP /δAcA.

Let us denote f∗1 the (unique) damages such that LE (f
∗
1 ) = 0.

The following proposition aims at characterizing f∗1 .

Proposition 1. Under assumption 1, the liability f∗1 inducing D to internalize
the external costs of his activity exists, is unique, is larger than δAcA + cP +
l/E [δP ], and is increasing in the loss l.

Now, suppose the judge adopts the damages f∗1 satisfying (1).

For the sake of interpretation, the following implicit definition may be seen
as more elegant and transparent:

f∗1 =
1

E [δP | δP > cP /f∗1 ]

(
δAcA + cP +

l

1−G (cP /f∗1 )

)
, (1)

where E [δP | δP > cP /f
∗
1 ] ≡

∫ 1
cP /f∗1

δPdG/ (1−G (cP /f∗1 )) is the conditional
expectation of δP , given that δP > cP /f

∗
1 .

According to this formulae, from the viewpoint of deterrence, D should be
liable for the legal expenses of the other parties (in present value), for punitive
damages and for compensatory interests. Punitive damages are required because
D sometimes escapes his liability. As usual, punitive damages are equal to the
harm, multiplied by the reciprocal of the probability of D escaping his liability
(Polinsky and Shavell, 1997). The legal interest rate should be set to reflect the
expected discount factor among the population of plaintiffs going to trial.
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When f∗1 is used, as D internalizes the external costs of his activity, we have:

x∗ (LD (f
∗
1 )) + p (x

∗ (LD (f
∗
1 )))LS (f

∗
1 )

≤ x+ p (x)LS (f
∗
1 ) ,

for all x. In particular, when x = x∗ (k0 + l), we obtain:

x∗ (LD (f
∗
1 )) + p (x

∗ (LD (f
∗
1 )))LS (f

∗
1 )

≤ x∗ (k0 + l) + p (x
∗ (k0 + l))LS (f1) .

Now, remember that, in the standard model, where no court delay is con-
sidered, total social costs is minimized if the level of care is x∗ (k0 + l). Then
total social costs equal:

x∗ (k0 + l) + p (x
∗ (k0 + l)) (k0 + l) .

From this, it should be clear that total social costs can be made smaller with
a positive court delay if LS (f∗1 ) ≤ k0+l. The following proposition derives from
this. The proof is relegated in the appendix.

Proposition 2. There exists α > 1 such that, if δD ≤ αE [δP ], for all damages
f0 that would prevail in the economy with no court delay, total social costs can
be made smaller in the economy with a positive court delay, provided the judge
adopts the damages f∗1 defined above.

2.4 The social costs of an accident

Consider now the effect of the damages on the social costs resulting if D causes
an accident.

The expected social costs given D caused an accident, LS (f1), depends on f1,
both because the damages determine P’s incentive to go to court and because
D and P value them differently in present values, due to heterogeneous time
preferences. Formally, we have:

LS (f1) =

∫ 1

cP /f1

((δD − δP ) f1 + k1)dG+ l, if f1 > cP ,

= l, otherwise.

Below, we will admit the following assumption.

Assumption 2. For all f1 > cP , the expected social costs given D caused an
accident, LS (f1), is strictly concave in the liability f1.

More general shapes could have been considered. However, this would not
have brought any new insight, while seriously burdening the discussion. Besides,
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we show in the appendix that this assumption holds true, in particular, if the
probability cumulative function is G (δP ) = (δP )

λ, with λ ≥ 1.

Using assumption 2, we are able to show the following property. The proof
can be found in the appendix.

Property 1. The expected social costs given D caused an accident, LS (f1),
satisfies the following properties (In parts (b) and (c), only f1 > cP are consid-
ered):

(a) An increase of l simply translates LS (f1) upward.
(b) The slope of LS (f1) is positive in a neighborhood of cP and tends

to δD − E [δP ] at infinity.
(c) Under assumption 1, if δD ≥ E [δP ], LS (f1) is strictly increasing.

Otherwise, if δD < E [δP ], there exists F > cP , satisfying L′S (F ) = 0, such
that LS (f1) is strictly increasing, when f1 < F , and strictly decreasing, when
f1 > F .

The figure below illustrates our results. The left part deals with the case
where δD ≥ E [δP ]. The right part deals with the case where δD < E [δP ].

Figure 1 - Expected social costs of an accident.

This stricking result may require further explanations. To understant it,
notice that the judge’s delay in rendering his verdict, in a way, commands a
future transaction between D and P. The court delay postpones the time when
D will compensate the loss l with the payment of the damages f1. In present
value, this transfert costs δDf1 to D and reports δP f1 to P. Thus, depending on
the time preferences, the transaction can be either costly or beneficial, meaning
that the damages will impact the social costs of an accident. As property 1, part
a, states, when D’s discount factor is larger that P’s expected discount factor,
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increasing the liability can only raise the social costs of an accident; otherwise,
increasing the liability will eventually reduce the social costs of an accident.

2.5 The optimal policy

Consider finally the optimal policy, where all effects of the damages are taken
into account, that is, on the one hand, its effect on D’s incentive to take care
and, on the other hand, its effect on the social costs resulting after D caused an
accident.

The social problem is to choose f1 to minimize:

C (f1) = x+ p (x)LS (f1) ,

knowing that D expends x = x∗ (LD (f1)) in care to minimize:

x+ p (x)LD (f1) .

After substitution, total social costs equal:

C (f1) = x∗ (LD (f1)) + p (x
∗ (LD (f1)))LS (f1) .

Therefore, for an interior solution, the optimal liability satisfies:

C ′ (f1) = [1 + p′ (x∗ (LD (f1)))LS (f1)] (x
∗)
′
(LD (f1))L

′
D (f1)

+p (x∗ (LD (f1)))L
′
S (f1) = 0

(2)

This condition shows that the choice of the judge should account for the two
effects discussed previously. On the one hand, the damages determines the way
D will internalize the external costs of his activity. This is represented by the
term under brackets. By definition, it will vanish if and only if the damages are
set at f∗1 . On the other hand, the damages influence the expected social costs
resulting after D has provoked an accident. This is reflected by last term. From
property 1, we know that this effect can go in any direction.

Let fo1 denote the optimal liability. For its characterization, it will be instruc-
tive to compare it with f∗1 , i.e., the liability that would induce D to completely
internalize the external costs of his activity (see proposition 1).

Since, by construction of f∗1 , we have:

1 + p′ (x∗ (LD (f
∗
1 )))LS (f

∗
1 ) = 0,

if evaluated at f1 = f∗1 , the first-order derivative above becomes:

C ′ (f∗1 ) = p (x∗ (LD (f
∗
1 )))L

′
S (f

∗
1 ) . (3)
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Assuming that the social problem is convex, this observation can be used to
show that the optimal liability fo1 will be smaller, equal, or larger than f

∗
1 , if

LS (f1) is respectively increasing, constant, or decreasing in a neighborhood of
f∗1 .

Indeed, consider for example the case where L′S (f
∗
1 ) > 0. Then, (3) implies

that C ′ (f∗1 ) > 0. Besides, the optimal liability satisfies C
′ (fo1 ) = 0. Under the

assumption that the social problem is convex, C ′ (f1) is an increasing function.
Then, as C ′ (fo1 ) < C ′ (f∗1 ), it is necessary that f

o
1 < f∗1 . The argument can

easily be adapted to deal with the other cases.

This result is quite intuitive. In a standard model of liability, where the
damages do not influence the cost of an accident, the social objective simply
is to induce an optimal care by D. This goal is filled if the magnitude of the
damages is set such that D will face the expected cost of an accident at the time
he chooses his level of care. Here, where the damages can either increase or
decrease the cost of an accident, including the loss and legal expenses (in present
value), the same objective must be counterbalanced by that of reducing the cost
of an accident. As expected, the damages should be reduced or increased, with
respect to the standard model, if they respectively increase or decrease the cost
of an accident.

Using Property 1, we can identify more explicitly the situations where fo1
should be set smaller, equal, or larger than f∗1 .

In the case where δD ≥ E [δP ], property 1 shows that LS (f1) is always
increasing. Consequently, the policy prescription in this case is that the optimal
liability fo1 should always be chosen smaller than f

∗
1 .

If δD < E [δP ], the policy prescription is less clear. Indeed, property 1 states
that LS (f1) is strictly increasing, when f1 < F , and strictly decreasing, when
f1 > F . Hence, fo1 will be smaller, equal, or larger than f

∗
1 , if f

∗
1 is respectively

smaller, equal, or larger than F .
Below, we propose a construction to discuss the relative positions of f∗1 and

F . To construct it, remember that the graph of LS (f1) is an inverted U-shaped
curve (for f1 > cP ), attaining a maximum at f1 = F . From property 1, an
increase of the loss l simply translates LS (f1) upward. The graph of LD (f1)
is an increasing curve. From proposition 1, LD (f1) and LS (f1) intersect only
once when f1 = f∗1 .
The first figure below deals with the general case. We consider three different

level of losses, l′, l0, and l′′, such that l′ < l0 < l′′. They are chosen such that
LD (f1) and LS (f1) respectively intersect before, at, and after F . Accordingly,
f∗1 is smaller, equal, or larger than F , when the harm is respectively equal to l′,
l0, and l′′.
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Figure 2 - Relative position of f∗1 and F .

The second figure below deals with the special case where LD (f1) and
LS (f1) intersect at f∗1 > F , when l = 0. Then, f∗1 is larger than F , for all
l.

The following proposition summarizes our results.

Proposition 3. If δD ≥ E [δP ], the optimal liability fo1 will be smaller than
f∗1 . If δD < E [δP ], two cases need to be considered, depending on whether
f∗1 < F or not, when l = 0. In the first one, there exists l0 > 0, such that the
optimal liability fo1 will be smaller, equal, or larger than f

∗
1 , if l is respectively

smaller, equal, or larger than l0. In the second one, the optimal liability fo1 will
be larger than f∗1 .
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3 The extended model

We consider here the possibility of settlement.

Let s be the offer made by D to P, with 0 ≤ s ≤ f1− cP . P accepts D’s offer
if and only if s ≥ δP f1 − cP . Alternatively, for all types δP ≤ d ≡ (s+ cP ) /f1,
P will accept the offer s and, for all types δP > d, P will refuse D’s offer. d is
the "marginal type of plaintiff".

D anticipates P’s behavior in choosing his offer s. The interim expected
payoff to D who offers s = df1 − cP is:

G (d) (df1 − cP ) + (1−G (d)) (δDf1 + cD) .
The first term is the probability of offer s being accepted times the offer s. The
second term is the probability that offer s is rejected times D’s cost in court.

Assuming an interior solution (i.e., 0 < s < f1− cP and cP /f1 < d < 1), the
equilibrium marginal type of plaintiff function d∗ is implicitly defined by:

[(d∗f − cP )− (δDf1 + cD)] g (d∗) + f1G (d∗) = 0.
The associated equilibrium offer function is s∗ = d∗f1 − cP .

A minor amount of manipulation yields the following equivalent condition:

d∗ + 1/λ (d∗)− (cD + cP ) /f1 = δD, (4)

where: λ (δP ) ≡ g (δP ) /G (δP ).

Assumption 3. The hazard rate λ (δP ) is non increasing.

The equilibrium settlement can be characterized using the figure below, rep-
resenting (4). The curve actually depicts D’s type δD as a function of his mar-
ginal type of plaintiff d∗. Under assumption 3, it is strictly increasing. The
pairs of D and P, with types δD and δP , at the left of the frontier settle. The
pairs of D and P, with types δD and δP , at the right of the frontier go to court.
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Several properties follow directly. An interior solution exists, for all δD, if
and only if 1/λ (cP /f1) ≤ cP /f1 and 1/λ (1) ≥ (cD + cP ) /f1. The marginal
type of plaintiff d∗ is decreasing in f1, and increasing in δD, c and λ (·).

< In progress >
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4 Appendix

A.1. Proof of proposition 1.
The external costs of D’s activity is:

LE (f1) =

∫ 1

cP /f1

(δAcA + cP − δP f1)dG+ l, if f1 > cP ,

= l, otherwise.

To see that damages f∗1 such that LE (f
∗
1 ) = 0 exist, first remark that:

LE (f1) = l, for all f1 ≤ cP ,
lim

f1→+∞
LE (f1) = −∞.

As LE (f1) is continuous, f∗1 exists and satisfies cP < f∗1 <∞.

To prove that f∗1 is unique, intuitively, we show below that, for all f1 > cP ,
the graph of LE (f1) is an inverted U-shaped curve and that only its decreasing
banch intersects the x-axis.

First-order differentiation yields:

L′E (f1) = δAcA
cP

(f1)
2 g

(
cP
f1

)
−
∫ 1

cP /f1

δP dG.

From this, we can show that (3):

lim
f1→cP

L′E (f1) =
δAcA
cP

g (1) ,

lim
f1→+∞

L′E (f1) = −E (δP ) .

Second-order differentiation yields:

L′′E (f1) = −δAcA
cP

(f1)
3 g

(
cP
f1

)(
2 +

cP
δAcA

− ε
(
cP
f1

))
.

Under assumption 1, L′′E (f1) < 0 and L
′
E (f1) is decreasing. Together with the

limits of L′E (f1), this implies that there exists ϕ, satisfying L
′
E (ϕ) = 0, such

that L′E (f1) > 0, for all f1 < ϕ, and L′E (f1) < 0, for all f1 > ϕ. Now, as
LE (f1) is increasing, for all f1 < ϕ, and limf1→cP LE (f1) = l, LE (f1) is larger
than l, for all f1 ≤ ϕ. This shows that f∗1 > ϕ. Finally, as LE (f1) is decreasing,
for all f1 > ϕ, given that LE (ϕ) > l and limf1→+∞ LE (f1) = −∞, there exists
a unique f∗1 , with ϕ < f∗1 <∞, such that LE (f∗1 ) = 0.

3To derive the second limit, remark that, as g (δP ) is continuous on [0, 1], it is bounded.
Thus, the first term of L′E (f1) will be negligible with respect to the second term, for suffi ciently
large f1.
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Now, to obtain the second result of proposition 1, rewrite (1) as:

f∗1 =
δAcA + cP

E [δP | δP > cP /f∗1 ]
+

l∫ 1
cP /f∗1

δP dG
.

This implies that:

f∗1 ≥ δAcA + cP +
l

E [δP ]
,

given that E [δP ] < E [δP | δP > cP /f
∗
1 ] < 1 and 0 <

∫ 1
cP /f1

δP dG < E [δP ], for
all f1 > cP .

Finally, to show that f∗1 is increasing in the loss l, first recall that, as f
∗
1 > ϕ,

L′E (f
∗
1 ) < 0. Then, use the implicit function theorem to obtain df∗1 /dl =

−1/L′E (f∗1 ) > 0. �

A.2. Proof of Proposition 2.
We show below that, if δD ≤ αE [δP ], with α = (cA + cP + l) / (δAcA + cP + l) >

1, then the inequality LS (f1) ≤ k0 + l holds true.

First remember that, by definition of f∗1 :

LS (f
∗
1 ) = LD (f

∗
1 ) .

Thus, by definition of LD (f1):

LS (f
∗
1 ) = (1−G (cP /f∗1 )) (δDf∗1 + cD) .

Using:

f∗1 =
1

E [δP | δP > cP /f∗1 ]

(
δAcA + cP +

l

1−G (cP /f∗1 )

)
.

we can obtain upon susbtitution:

LS (f
∗
1 ) =

δD
E [δP | δP > cP /f∗1 ]

((1−G (cP /f∗1 )) (δAcA + cP ) + l)

+ (1−G (cP /f∗1 )) cD.

Finally, as G (cP /f∗1 ) ≥ 0 and E [δP | δP > cP /f
∗
1 ] ≥ E [δP ], it is clear that:

LS (f
∗
1 ) ≤

δD
E [δP ]

(δAcA + cP + l) + cD.

Therefore, a suffi cient condition for the inequality to hold true is:

δD
E [δP ]

(δAcA + cP + l) + cD ≤ cA + cD + cP + l,
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from which we immediately can derive the suffi cient condition stated in Propo-
sition 2. �

A.3. Derivation of assumption 2 when G (δP ) = (δP )
λ, with λ ≥ 1.

Consider the case where the probability cumulative function is G (δP ) =
(δP )

λ. The associated probability density function is g (δP ) = λ (δP )
λ−1. The

associated expected value is E [δP ] = λ/ (λ+ 1).
Integrating, for all f1 > cP , we can obtain:

LS (f1) =

(
1−

(
cP
f1

)λ)
(δDf1 + k1)−

λ

λ+ 1

(
1−

(
cP
f1

)λ+1)
f1 + l.

The following figure represents it, in the case where cP = 1, k1 = 2, l = 3,
and considering in turn δD = (1/2)E [δP ] (line) δD = E [δP ] (dash) and δD =
(3/2)E [δP ] (dots). The left and right parts respectively deal with the cases
where λ = 1 and λ = 2.
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To derive the limits of LS (f1), rearrange the precedent expression as:

LS (f1) = A+Bf1 − C (f1)1−λ −D (f1)−λ ,

where:

A = k1 + l > 0,

B = δD − E [δP ] ,
C = δD (cP )

λ
> 0,

D = (k1 − E [δP ] cP ) (cP )λ > 0.

When λ > 1, as limf1→+∞ (f1)
1−λ

= limf1→+∞ (f1)
−λ

= 0, this implies that
limf1→+∞ LS (f1) = −∞, when B < 0, = A, when B = 0, and = +∞, when
B > 0. In the special case of a uniform distribution (i.e., λ = 1), the same
results hold, except that limf1→+∞ LS (f1) = A− C, when B = 0.
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To characterize the variations of LS , differentiate it to get:

L′S (f1) = B + [(λ− 1)Cf1 +Dλ] (f1)−λ−1

L′′S (f1) = − [(λ− 1)Cf1 + (λ+ 1)D]λ (f1)−λ−2 < 0

From this, if B ≥ 0, then L′S (f1) > 0, for all f1. Otherwise, if B < 0, remark
first that limf1→cP L

′
S (f1) = λ (δD + k1/cP − 1) > 0 and, as limf1→+∞ (f1)

−λ−1
=

limf1→+∞ (f1)
−λ−2

= 0, limf1→+∞ L′S (f1) = B < 0. Thus, given that L′S (f1)
is decreasing (for L′′S (f1) < 0), there exists F such that L

′
S (f1) > 0, for f1 < F ,

and L′S (f1), for f1 > F . �

A.4. Proof of property 1.
The expected social costs given D caused an accident is:

LS (f1) =

∫ 1

cP /f1

((δD − δP ) f1 + k1) dG+ l, if f1 > cP ,

= l, otherwise.

Part (a) is immediate, as LS (f1)− l does not depend on l.

In the rest of the proof, we will limit our attention to f1 > cP .

To show part (b), differentiate to obtain:

L′S (f1) =
cP

(f1)
2 (δDf1 + δAcA + cD) g

(
cP
f1

)
+

∫ 1

cP /f1

(δD − δP ) dG.

From this, we can show that (4):

lim
f1→cP

L′S (f1) =
1

cP
(δAcA + cD + δDcP ) g (1) ,

lim
f1→+∞

L′E (f1) = δD − E (δP ) .

Under assumption 1, which means that L′S (f1) is decreasing, part (c) directly
follows from part (b). �

4To derive the second limit, remark that, as g (δP ) is continuous on [0, 1], it is bounded.
Thus, the first term of the derivative will be negligible, for suffi ciently large f1
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